Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 13(1): 6601, 2023 04 23.
Article in English | MEDLINE | ID: covidwho-2297754

ABSTRACT

A COVID-19, caused by SARS-CoV-2, has been declared a global pandemic by WHO. It first appeared in China at the end of 2019 and quickly spread throughout the world. During the third layer, it became more critical. COVID-19 spread is extremely difficult to control, and a huge number of suspected cases must be screened for a cure as soon as possible. COVID-19 laboratory testing takes time and can result in significant false negatives. To combat COVID-19, reliable, accurate and fast methods are urgently needed. The commonly used Reverse Transcription Polymerase Chain Reaction has a low sensitivity of approximately 60% to 70%, and sometimes even produces negative results. Computer Tomography (CT) has been observed to be a subtle approach to detecting COVID-19, and it may be the best screening method. The scanned image's quality, which is impacted by motion-induced Poisson or Impulse noise, is vital. In order to improve the quality of the acquired image for post segmentation, a novel Impulse and Poisson noise reduction method employing boundary division max/min intensities elimination along with an adaptive window size mechanism is proposed. In the second phase, a number of CNN techniques are explored for detecting COVID-19 from CT images and an Assessment Fusion Based model is proposed to predict the result. The AFM combines the results for cutting-edge CNN architectures and generates a final prediction based on choices. The empirical results demonstrate that our proposed method performs extensively and is extremely useful in actual diagnostic situations.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/diagnostic imaging , SARS-CoV-2 , COVID-19 Testing , Tomography, X-Ray Computed/methods
2.
J Supercomput ; 78(2): 1783-1806, 2022.
Article in English | MEDLINE | ID: covidwho-1274902

ABSTRACT

Rapid communication of viral sicknesses is an arising public medical issue across the globe. Out of these, COVID-19 is viewed as the most critical and novel infection nowadays. The current investigation gives an effective framework for the monitoring and prediction of COVID-19 virus infection (C-19VI). To the best of our knowledge, no research work is focused on incorporating IoT technology for C-19 outspread over spatial-temporal patterns. Moreover, limited work has been done in the direction of prediction of C-19 in humans for controlling the spread of COVID-19. The proposed framework includes a four-level architecture for the expectation and avoidance of COVID-19 contamination. The presented model comprises COVID-19 Data Collection (C-19DC) level, COVID-19 Information Classification (C-19IC) level, COVID-19-Mining and Extraction (C-19ME) level, and COVID-19 Prediction and Decision Modeling (C-19PDM) level. Specifically, the presented model is used to empower a person/community to intermittently screen COVID-19 Fever Measure (C-19FM) and forecast it so that proactive measures are taken in advance. Additionally, for prescient purposes, the probabilistic examination of C-19VI is quantified as degree of membership, which is cumulatively characterized as a COVID-19 Fever Measure (C-19FM). Moreover, the prediction is realized utilizing the temporal recurrent neural network. Additionally, based on the self-organized mapping technique, the presence of C-19VI is determined over a geographical area. Simulation is performed over four challenging datasets. In contrast to other strategies, altogether improved outcomes in terms of classification efficiency, prediction viability, and reliability were registered for the introduced model.

SELECTION OF CITATIONS
SEARCH DETAIL